Copied to
clipboard

?

G = C42.11F5order 320 = 26·5

8th non-split extension by C42 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.11F5, D10.8M4(2), D5⋊(C4⋊C8), C203(C2×C8), (C4×D5)⋊4C8, C42(D5⋊C8), (C4×C20).12C4, Dic57(C2×C8), (C4×D5).87D4, C20⋊C817C2, C4.29(C4⋊F5), C20.29(C4⋊C4), (C4×D5).30Q8, D10.14(C2×C8), C10.3(C22×C8), Dic5.8(C2×Q8), D10.24(C4⋊C4), Dic5.26(C2×D4), (C4×Dic5).45C4, (D5×C42).25C2, C10.4(C2×M4(2)), Dic5⋊C815C2, C2.4(D5⋊M4(2)), C22.28(C22×F5), (C4×Dic5).320C22, (C2×Dic5).315C23, C51(C2×C4⋊C8), C2.1(C2×C4⋊F5), C10.1(C2×C4⋊C4), C2.5(C2×D5⋊C8), (C2×C4×D5).28C4, (C2×D5⋊C8).9C2, (C2×C5⋊C8).17C22, (C2×C4).131(C2×F5), (C2×C20).168(C2×C4), (C2×C4×D5).410C22, (C2×C10).17(C22×C4), (C2×Dic5).165(C2×C4), (C22×D5).117(C2×C4), SmallGroup(320,1017)

Series: Derived Chief Lower central Upper central

C1C10 — C42.11F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C20⋊C8 — C42.11F5
C5C10 — C42.11F5

Subgroups: 426 in 138 conjugacy classes, 70 normal (32 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×6], C22, C22 [×6], C5, C8 [×4], C2×C4 [×3], C2×C4 [×13], C23, D5 [×4], C10 [×3], C42, C42 [×3], C2×C8 [×8], C22×C4 [×3], Dic5 [×2], Dic5 [×2], Dic5, C20 [×4], C20, D10 [×6], C2×C10, C4⋊C8 [×4], C2×C42, C22×C8 [×2], C5⋊C8 [×4], C4×D5 [×8], C4×D5 [×2], C2×Dic5 [×3], C2×C20 [×3], C22×D5, C2×C4⋊C8, C4×Dic5 [×3], C4×C20, D5⋊C8 [×4], C2×C5⋊C8 [×4], C2×C4×D5 [×3], C20⋊C8 [×2], Dic5⋊C8 [×2], D5×C42, C2×D5⋊C8 [×2], C42.11F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], D4 [×2], Q8 [×2], C23, C4⋊C4 [×4], C2×C8 [×6], M4(2) [×2], C22×C4, C2×D4, C2×Q8, F5, C4⋊C8 [×4], C2×C4⋊C4, C22×C8, C2×M4(2), C2×F5 [×3], C2×C4⋊C8, D5⋊C8 [×2], C4⋊F5 [×2], C22×F5, C2×D5⋊C8, D5⋊M4(2), C2×C4⋊F5, C42.11F5

Generators and relations
 G = < a,b,c,d | a4=b4=c5=1, d4=b2, ab=ba, ac=ca, dad-1=a-1, bc=cb, bd=db, dcd-1=c3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 18 132 95)(2 96 133 19)(3 20 134 89)(4 90 135 21)(5 22 136 91)(6 92 129 23)(7 24 130 93)(8 94 131 17)(9 126 80 101)(10 102 73 127)(11 128 74 103)(12 104 75 121)(13 122 76 97)(14 98 77 123)(15 124 78 99)(16 100 79 125)(25 139 33 47)(26 48 34 140)(27 141 35 41)(28 42 36 142)(29 143 37 43)(30 44 38 144)(31 137 39 45)(32 46 40 138)(49 160 106 114)(50 115 107 153)(51 154 108 116)(52 117 109 155)(53 156 110 118)(54 119 111 157)(55 158 112 120)(56 113 105 159)(57 151 65 83)(58 84 66 152)(59 145 67 85)(60 86 68 146)(61 147 69 87)(62 88 70 148)(63 149 71 81)(64 82 72 150)
(1 134 5 130)(2 135 6 131)(3 136 7 132)(4 129 8 133)(9 158 13 154)(10 159 14 155)(11 160 15 156)(12 153 16 157)(17 96 21 92)(18 89 22 93)(19 90 23 94)(20 91 24 95)(25 149 29 145)(26 150 30 146)(27 151 31 147)(28 152 32 148)(33 81 37 85)(34 82 38 86)(35 83 39 87)(36 84 40 88)(41 57 45 61)(42 58 46 62)(43 59 47 63)(44 60 48 64)(49 99 53 103)(50 100 54 104)(51 101 55 97)(52 102 56 98)(65 137 69 141)(66 138 70 142)(67 139 71 143)(68 140 72 144)(73 113 77 117)(74 114 78 118)(75 115 79 119)(76 116 80 120)(105 123 109 127)(106 124 110 128)(107 125 111 121)(108 126 112 122)
(1 12 57 143 113)(2 144 13 114 58)(3 115 137 59 14)(4 60 116 15 138)(5 16 61 139 117)(6 140 9 118 62)(7 119 141 63 10)(8 64 120 11 142)(17 150 112 103 36)(18 104 151 37 105)(19 38 97 106 152)(20 107 39 145 98)(21 146 108 99 40)(22 100 147 33 109)(23 34 101 110 148)(24 111 35 149 102)(25 52 91 125 87)(26 126 53 88 92)(27 81 127 93 54)(28 94 82 55 128)(29 56 95 121 83)(30 122 49 84 96)(31 85 123 89 50)(32 90 86 51 124)(41 71 73 130 157)(42 131 72 158 74)(43 159 132 75 65)(44 76 160 66 133)(45 67 77 134 153)(46 135 68 154 78)(47 155 136 79 69)(48 80 156 70 129)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,18,132,95)(2,96,133,19)(3,20,134,89)(4,90,135,21)(5,22,136,91)(6,92,129,23)(7,24,130,93)(8,94,131,17)(9,126,80,101)(10,102,73,127)(11,128,74,103)(12,104,75,121)(13,122,76,97)(14,98,77,123)(15,124,78,99)(16,100,79,125)(25,139,33,47)(26,48,34,140)(27,141,35,41)(28,42,36,142)(29,143,37,43)(30,44,38,144)(31,137,39,45)(32,46,40,138)(49,160,106,114)(50,115,107,153)(51,154,108,116)(52,117,109,155)(53,156,110,118)(54,119,111,157)(55,158,112,120)(56,113,105,159)(57,151,65,83)(58,84,66,152)(59,145,67,85)(60,86,68,146)(61,147,69,87)(62,88,70,148)(63,149,71,81)(64,82,72,150), (1,134,5,130)(2,135,6,131)(3,136,7,132)(4,129,8,133)(9,158,13,154)(10,159,14,155)(11,160,15,156)(12,153,16,157)(17,96,21,92)(18,89,22,93)(19,90,23,94)(20,91,24,95)(25,149,29,145)(26,150,30,146)(27,151,31,147)(28,152,32,148)(33,81,37,85)(34,82,38,86)(35,83,39,87)(36,84,40,88)(41,57,45,61)(42,58,46,62)(43,59,47,63)(44,60,48,64)(49,99,53,103)(50,100,54,104)(51,101,55,97)(52,102,56,98)(65,137,69,141)(66,138,70,142)(67,139,71,143)(68,140,72,144)(73,113,77,117)(74,114,78,118)(75,115,79,119)(76,116,80,120)(105,123,109,127)(106,124,110,128)(107,125,111,121)(108,126,112,122), (1,12,57,143,113)(2,144,13,114,58)(3,115,137,59,14)(4,60,116,15,138)(5,16,61,139,117)(6,140,9,118,62)(7,119,141,63,10)(8,64,120,11,142)(17,150,112,103,36)(18,104,151,37,105)(19,38,97,106,152)(20,107,39,145,98)(21,146,108,99,40)(22,100,147,33,109)(23,34,101,110,148)(24,111,35,149,102)(25,52,91,125,87)(26,126,53,88,92)(27,81,127,93,54)(28,94,82,55,128)(29,56,95,121,83)(30,122,49,84,96)(31,85,123,89,50)(32,90,86,51,124)(41,71,73,130,157)(42,131,72,158,74)(43,159,132,75,65)(44,76,160,66,133)(45,67,77,134,153)(46,135,68,154,78)(47,155,136,79,69)(48,80,156,70,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,18,132,95)(2,96,133,19)(3,20,134,89)(4,90,135,21)(5,22,136,91)(6,92,129,23)(7,24,130,93)(8,94,131,17)(9,126,80,101)(10,102,73,127)(11,128,74,103)(12,104,75,121)(13,122,76,97)(14,98,77,123)(15,124,78,99)(16,100,79,125)(25,139,33,47)(26,48,34,140)(27,141,35,41)(28,42,36,142)(29,143,37,43)(30,44,38,144)(31,137,39,45)(32,46,40,138)(49,160,106,114)(50,115,107,153)(51,154,108,116)(52,117,109,155)(53,156,110,118)(54,119,111,157)(55,158,112,120)(56,113,105,159)(57,151,65,83)(58,84,66,152)(59,145,67,85)(60,86,68,146)(61,147,69,87)(62,88,70,148)(63,149,71,81)(64,82,72,150), (1,134,5,130)(2,135,6,131)(3,136,7,132)(4,129,8,133)(9,158,13,154)(10,159,14,155)(11,160,15,156)(12,153,16,157)(17,96,21,92)(18,89,22,93)(19,90,23,94)(20,91,24,95)(25,149,29,145)(26,150,30,146)(27,151,31,147)(28,152,32,148)(33,81,37,85)(34,82,38,86)(35,83,39,87)(36,84,40,88)(41,57,45,61)(42,58,46,62)(43,59,47,63)(44,60,48,64)(49,99,53,103)(50,100,54,104)(51,101,55,97)(52,102,56,98)(65,137,69,141)(66,138,70,142)(67,139,71,143)(68,140,72,144)(73,113,77,117)(74,114,78,118)(75,115,79,119)(76,116,80,120)(105,123,109,127)(106,124,110,128)(107,125,111,121)(108,126,112,122), (1,12,57,143,113)(2,144,13,114,58)(3,115,137,59,14)(4,60,116,15,138)(5,16,61,139,117)(6,140,9,118,62)(7,119,141,63,10)(8,64,120,11,142)(17,150,112,103,36)(18,104,151,37,105)(19,38,97,106,152)(20,107,39,145,98)(21,146,108,99,40)(22,100,147,33,109)(23,34,101,110,148)(24,111,35,149,102)(25,52,91,125,87)(26,126,53,88,92)(27,81,127,93,54)(28,94,82,55,128)(29,56,95,121,83)(30,122,49,84,96)(31,85,123,89,50)(32,90,86,51,124)(41,71,73,130,157)(42,131,72,158,74)(43,159,132,75,65)(44,76,160,66,133)(45,67,77,134,153)(46,135,68,154,78)(47,155,136,79,69)(48,80,156,70,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,18,132,95),(2,96,133,19),(3,20,134,89),(4,90,135,21),(5,22,136,91),(6,92,129,23),(7,24,130,93),(8,94,131,17),(9,126,80,101),(10,102,73,127),(11,128,74,103),(12,104,75,121),(13,122,76,97),(14,98,77,123),(15,124,78,99),(16,100,79,125),(25,139,33,47),(26,48,34,140),(27,141,35,41),(28,42,36,142),(29,143,37,43),(30,44,38,144),(31,137,39,45),(32,46,40,138),(49,160,106,114),(50,115,107,153),(51,154,108,116),(52,117,109,155),(53,156,110,118),(54,119,111,157),(55,158,112,120),(56,113,105,159),(57,151,65,83),(58,84,66,152),(59,145,67,85),(60,86,68,146),(61,147,69,87),(62,88,70,148),(63,149,71,81),(64,82,72,150)], [(1,134,5,130),(2,135,6,131),(3,136,7,132),(4,129,8,133),(9,158,13,154),(10,159,14,155),(11,160,15,156),(12,153,16,157),(17,96,21,92),(18,89,22,93),(19,90,23,94),(20,91,24,95),(25,149,29,145),(26,150,30,146),(27,151,31,147),(28,152,32,148),(33,81,37,85),(34,82,38,86),(35,83,39,87),(36,84,40,88),(41,57,45,61),(42,58,46,62),(43,59,47,63),(44,60,48,64),(49,99,53,103),(50,100,54,104),(51,101,55,97),(52,102,56,98),(65,137,69,141),(66,138,70,142),(67,139,71,143),(68,140,72,144),(73,113,77,117),(74,114,78,118),(75,115,79,119),(76,116,80,120),(105,123,109,127),(106,124,110,128),(107,125,111,121),(108,126,112,122)], [(1,12,57,143,113),(2,144,13,114,58),(3,115,137,59,14),(4,60,116,15,138),(5,16,61,139,117),(6,140,9,118,62),(7,119,141,63,10),(8,64,120,11,142),(17,150,112,103,36),(18,104,151,37,105),(19,38,97,106,152),(20,107,39,145,98),(21,146,108,99,40),(22,100,147,33,109),(23,34,101,110,148),(24,111,35,149,102),(25,52,91,125,87),(26,126,53,88,92),(27,81,127,93,54),(28,94,82,55,128),(29,56,95,121,83),(30,122,49,84,96),(31,85,123,89,50),(32,90,86,51,124),(41,71,73,130,157),(42,131,72,158,74),(43,159,132,75,65),(44,76,160,66,133),(45,67,77,134,153),(46,135,68,154,78),(47,155,136,79,69),(48,80,156,70,129)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL6(𝔽41)

1160000
5400000
003414027
00071427
00271470
002701434
,
4000000
0400000
0032000
0003200
0000320
0000032
,
100000
010000
0000040
0010040
0001040
0000140
,
10250000
14310000
001922200
003922019
001902239
000202219

G:=sub<GL(6,GF(41))| [1,5,0,0,0,0,16,40,0,0,0,0,0,0,34,0,27,27,0,0,14,7,14,0,0,0,0,14,7,14,0,0,27,27,0,34],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[10,14,0,0,0,0,25,31,0,0,0,0,0,0,19,39,19,0,0,0,22,22,0,20,0,0,20,0,22,22,0,0,0,19,39,19] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P 5 8A···8P10A10B10C20A···20L
order12222222444444444444444458···810101020···20
size1111555511112222555510101010410···104444···4

56 irreducible representations

dim11111111122244444
type++++++-++
imageC1C2C2C2C2C4C4C4C8D4Q8M4(2)F5C2×F5D5⋊C8C4⋊F5D5⋊M4(2)
kernelC42.11F5C20⋊C8Dic5⋊C8D5×C42C2×D5⋊C8C4×Dic5C4×C20C2×C4×D5C4×D5C4×D5C4×D5D10C42C2×C4C4C4C2
# reps122122241622413444

In GAP, Magma, Sage, TeX

C_4^2._{11}F_5
% in TeX

G:=Group("C4^2.11F5");
// GroupNames label

G:=SmallGroup(320,1017);
// by ID

G=gap.SmallGroup(320,1017);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,120,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽